Mathematics: analysis and approaches teacher support material

First assessment 2021
Published February 2019

Published on behalf of the International Baccalaureate Organization, a not-for-profit educational foundation of 15 Route des Morillons, 1218 Le Grand-Saconnex, Geneva, Switzerland by the

International Baccalaureate Organization (UK) Ltd
Peterson House, Malthouse Avenue, Cardiff Gate
Cardiff, Wales CF23 8GL
United Kingdom
Website: ibo.org

© International Baccalaureate Organization 2019

The International Baccalaureate Organization (known as the IB) offers four high-quality and challenging educational programmes for a worldwide community of schools, aiming to create a better, more peaceful world. This publication is one of a range of materials produced to support these programmes.

The IB may use a variety of sources in its work and checks information to verify accuracy and authenticity, particularly when using community-based knowledge sources such as Wikipedia. The IB respects the principles of intellectual property and makes strenuous efforts to identify and obtain permission before publication from rights holders of all copyright material used. The IB is grateful for permissions received for material used in this publication and will be pleased to correct any errors or omissions at the earliest opportunity.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the IB’s prior written permission, or as expressly permitted by the Rules for use of IB Intellectual Property.

IB merchandise and publications can be purchased through the IB Store (email: sales@ibo.org). Any commercial use of IB publications (whether fee-covered or commercial) by third parties acting in the IB’s ecosystem without a formal relationship with the IB (including but not limited to tutoring organizations, professional development providers, educational publishers and operators of curriculum mapping or teacher resource digital platforms etc) is prohibited and requires a subsequent written license from the IB. License requests should be sent to copyright@ibo.org. More information can be obtained on the IB public website.
IB learner profile

The IB learner profile represents 10 attributes valued by IB World Schools. We believe these attributes, and others like them, can help individuals and groups become responsible members of local, national and global communities.

We nurture our curiosity, developing skills for inquiry and research. We know how to learn independently and with others. We learn with enthusiasm and sustain our love of learning throughout life.

We develop and use conceptual understanding, exploring knowledge across a range of disciplines. We engage with issues and ideas that have local and global significance.

We use critical and creative thinking skills to analyse and take responsible action on complex problems. We exercise initiative in making reasoned, ethical decisions.

We express ourselves confidently and creatively in more than one language and in many ways. We collaborate effectively, listening carefully to the perspectives of other individuals and groups.

We act with integrity and honesty, with a strong sense of fairness and justice, and with respect for the dignity and rights of people everywhere. We take responsibility for our actions and their consequences.

We critically appreciate our own cultures and personal histories, as well as the values and traditions of others. We seek and evaluate a range of points of view, and we are willing to grow from the experience.

We show empathy, compassion and respect. We have a commitment to service, and we act to make a positive difference in the lives of others and in the world around us.

We understand the importance of balancing different aspects of our lives — intellectual, physical, and emotional — to achieve well-being for ourselves and others. We recognize our interdependence with other people and with the world in which we live.

We thoughtfully consider the world and our own ideas and experiences. We work to understand our strengths and weaknesses in order to support our learning and personal development.

We approach uncertainty with forethought and determination; we work independently and cooperatively to explore new ideas and innovative strategies. We are resourceful and resilient in the face of challenges and change.

IB mission statement

The International Baccalaureate aims to develop inquiring, knowledgeable and caring young people who help to create a better and more peaceful world through intercultural understanding and respect.

To this end the organization works with schools, governments and international organizations to develop challenging programmes of international education and rigorous assessment.

These programmes encourage students across the world to become active, compassionate and lifelong learners who understand that other people, with their differences, can also be right.
IB learner profile

The aim of all IB programmes is to develop internationally minded people who, recognizing their common humanity and shared guardianship of the planet, help to create a better and more peaceful world.

As IB learners we strive to be:

INQUIRERS
We nurture our curiosity, developing skills for inquiry and research. We know how to learn independently and with others. We learn with enthusiasm and sustain our love of learning throughout life.

KNOWLEDGEABLE
We develop and use conceptual understanding, exploring knowledge across a range of disciplines. We engage with issues and ideas that have local and global significance.

THINKERS
We use critical and creative thinking skills to analyse and take responsible action on complex problems. We exercise initiative in making reasoned, ethical decisions.

COMMUNICATORS
We express ourselves confidently and creatively in more than one language and in many ways. We collaborate effectively, listening carefully to the perspectives of other individuals and groups.

PRINCIPLED
We act with integrity and honesty, with a strong sense of fairness and justice, and with respect for the dignity and rights of people everywhere. We take responsibility for our actions and their consequences.

OPEN-MINDED
We critically appreciate our own cultures and personal histories, as well as the values and traditions of others. We seek and evaluate a range of points of view, and we are willing to grow from the experience.

CARING
We show empathy, compassion and respect. We have a commitment to service, and we act to make a positive difference in the lives of others and in the world around us.

RISK-TAKERS
We approach uncertainty with forethought and determination; we work independently and cooperatively to explore new ideas and innovative strategies. We are resourceful and resilient in the face of challenges and change.

BALANCED
We understand the importance of balancing different aspects of our lives—intellectual, physical, and emotional—to achieve well-being for ourselves and others. We recognize our interdependence with other people and with the world in which we live.

REFLECTIVE
We thoughtfully consider the world and our own ideas and experience. We work to understand our strengths and weaknesses in order to support our learning and personal development.

The IB learner profile represents 10 attributes valued by IB World Schools. We believe these attributes, and others like them, can help individuals and groups become responsible members of local, national and global communities.
Contents

Introduction and general guidance
- Aims and overview
- Mathematics: analysis and approaches at a glance
- Approaches to teaching and learning
- Cognitive academic language proficiency and mathematics

Structuring the courses and making connections
- Structuring the mathematics courses
- Incorporating the IB learner profile

The toolkit
- Supporting classroom activities
- Cognitive activators
- Conceptual understandings
- Using technology
- Mathematical modelling
- Proof

Assessment
- Preparing for the internal assessment exploration
- Planning
- Authenticity
- Assessment criteria
- Frequently asked questions about the IA
- Preparing for HL paper 3

Appendices
- List of previously submitted IA titles
- Further reading
- Videos
Welcome to the mathematics teacher support material (TSM). This TSM is designed to assist both new and experienced teachers to build or revise their course design so that it reflects the aims and objectives of the mathematics courses.

The TSM is designed to:
• support experienced and inexperienced teachers alike in structuring and delivering a course
• support teachers with the organization of practical and investigative work
• complement IB professional development.

The TSM is structured to cover generic issues such as the approaches to teaching and learning and TOK and how these relate to mathematics, as well as subject-specific considerations for the teaching of mathematics.

There are three sections to the TSM, which are organized as follows.
• Structuring the courses and making connections—practical advice and suggestions on the organization of classes, an outline of the changes from the 2012 syllabus to the 2019 syllabus, and an overview of the structure of the courses.
• The “toolkit”—exemplar classroom activities to support the development of inquiry, proof, modelling, and the use of technology. These activities can be used as they stand or can be adapted. They are designed to give teachers guidance and to encourage teachers to develop their own resources. They also contain downloadable materials that can be used with students.
• Assessment—practical advice from experienced teachers and examiners on preparing students for the IA and the HL paper 3.

This TSM has been written by experienced practitioners to support teachers in designing and delivering this subject in a variety of different schools. It is not intended to be prescriptive or an exhaustive way of addressing every issue.
This course recognizes the need for analytical expertise in a world where innovation is increasingly dependent on a deep understanding of mathematics. This course includes topics that are both traditionally part of a pre-university mathematics course (for example, functions, trigonometry, calculus) as well as topics that are amenable to investigation, conjecture and proof, for instance the study of sequences and series at both higher level (HL) and standard level (SL), and proof by induction at HL.

The course allows the use of technology, as fluency in relevant mathematical software and hand-held technology is important regardless of choice of course. However, there is a strong emphasis on the ability to construct, communicate and justify correct mathematical arguments. There will be a recognition that the development of mathematical thinking is important for a student.

Students who choose this subject at SL or HL should be comfortable in the manipulation of algebraic expressions and enjoy the recognition of patterns and understand the mathematical generalization of these patterns. Students who wish to take Mathematics: analysis and approaches at HL will have strong algebraic skills and the ability to understand simple proof. They will be students who enjoy spending time with problems and get pleasure and satisfaction from solving challenging problems.
Approaches to teaching and learning across the Diploma Programme refer to deliberate strategies, skills and attitudes that permeate the teaching and learning environment. These approaches and tools, intrinsically linked with the IB learner profile attributes, enhance student learning and assist student preparation for the Diploma Programme assessment and beyond.

The aims of approaches to teaching and learning in the Diploma Programme are to:

1. Empower teachers as teachers of learners as well as teachers of content
2. Empower teachers to create clearer strategies for facilitating learning experiences in which students are more meaningfully engaged in structured inquiry and greater critical and creative thinking
3. Promote both the aims of individual subjects (making them more than course aspirations) and linking previously-isolated knowledge (concurrency of learning)
4. Encourage students to develop an explicit variety of skills that will equip them to continue to be actively engaged in learning after they leave school, and to help them not only obtain university admission through better grades but also prepare them for success during tertiary education and beyond
5. Enhance further the coherence and relevance of the students’ Diploma Programme experience
6. Allow schools to identify the distinctive nature of an IB Diploma Programme education, with its blend of idealism and practicality.

The five approaches to learning (developing thinking skills, social skills, communication skills, self-management skills and research skills) along with the six approaches to teaching (teaching that is inquiry-based, conceptually-focused, contextualized, collaborative, differentiated and informed by assessment) encompass the key values and principles that underpin IB pedagogy.

More advice and support on these approaches to teaching and learning can be found in the “Approaches to teaching and approaches to learning” section in the subject guide. Additionally, a suite of materials on approaches to teaching and learning in the Diploma Programme is available on the programme resource centre. The guidance given below builds on these resources.

Approaches to teaching and learning and mathematics

The following articulation of the approaches to teaching and learning is for guidance only and to demonstrate how mathematics as a course facilitates the development of these skills. The links and examples given are not exhaustive, and teachers and students may identify other ways in which these skills are linked to their teaching and learning within mathematics.

Six approaches to teaching
1. Teaching based on inquiry
2. Teaching focused on conceptual understanding
3. Teaching developed in local and global contexts
4. Teaching focused on effective teamwork and collaboration
5. Teaching differentiated to meet the needs of all learners
6. Teaching informed by assessment (formative and summative)
Five approaches to learning
1. Thinking skills
2. Social skills
3. Communication skills
4. Self-management skills
5. Research skills

Approaches to teaching

Inquiry and mathematics
The aims of the mathematics courses emphasize developing students’ curiosity and enabling them to use external resources so that they can independently extend their understanding of mathematics. These aims can be achieved through mathematical inquiry. Inquiry based teaching in DP mathematics is a pedagogical approach which allows students to develop conceptual understanding.

Teaching based on inquiry
The idea behind inquiry-based teaching in IB programmes is to develop students’ natural curiosity together with the skills of self-management, thinking, research and collaborative learning so that they can become motivated and autonomous lifelong learners.

There are different types of inquiry-based learning, and these include:
- experiential learning
- problem and project-based learning
- discovery learning.

The most significant aspect of inquiry-based teaching is that students are actively engaged in their own learning, constructing their own understandings.

DP mathematics teachers should provide students with opportunities to learn through mathematical inquiry. Lesson plans should accommodate appropriate levels of inquiry (structured, guided, open-ended) that suits different students’ needs. In a classroom where inquiry-based teaching is happening, there is much interaction between students, and between students and teacher. The teacher’s primary role in such a setting is to promote questions and to facilitate the learning process.

Guiding or essential mathematical questions in the form of facts, concepts and debatable knowledge encourage the learner’s curiosity. Students have a degree of freedom to make decisions about how to proceed in their learning, which most often progresses from the concrete towards the abstract.

Conceptual understanding and mathematics
In DP mathematics courses, conceptual understandings are key to promoting deep learning. These conceptual understandings are supported by twelve fundamental concepts which relate with varying emphasis to each of the five topics. Teachers can use these concepts to develop the curriculum. Schools may identify and develop additional concepts to meet local circumstances and curriculum requirements.

Each topic in the guide begins with a description of the essential understandings of the topic, suggestions of concepts fundamental to the topic, and statements about conceptual understanding relevant to the content within the topic.

Teaching focused on conceptual understanding
An important motivation for conceptually focused teaching in IB programmes is to help students build their ability to engage with significant and complex ideas. Equally valuable are the discussions of the “essential understandings“ behind a topic, which can help students get to the heart of why they are learning what they are learning.
To appreciate the role of concepts in building lasting and significant understandings, it is helpful to think of concepts as the building blocks of students’ cognitive frameworks. When they are learning at a conceptual level, students are integrating new knowledge into their existing understandings. They learn how seemingly discrete topics are connected and are ready to transfer their learning to new contexts. A subject emerges for them in a holistic light. In a classroom where conceptually focused teaching is happening, there is continuous movement between facts and what they mean, with students asking why the facts matter as a natural part of their learning process.

Local and global contexts and mathematics
The structure of the mathematics guide provides links to real-life applications, where appropriate, that allow students to contextualize their mathematical learning. The topics in the course have many applications to other disciplines. Mathematical concepts should be taught in a real-world context where appropriate to help students understand local and global phenomena. Students should be given the right content and context in order for them to be able to interpret the given mathematical concept in the global sense. For example, students can learn exponential growth and decay within the context of spread of disease in order to better understand the spread of cholera in Africa.

Teaching developed in local and global contexts
As young individuals and as members of local and global communities, students make sense of the world through their life experiences and the world around them. IB programmes emphasize contextualized teaching because the more students can relate their learning to real-life contexts, the more likely they are to engage with it. IB programmes also enable students to apply their learning; contextualized teaching, like conceptually-focused teaching, helps students to get to the heart of why they are learning what they are learning.

In order to appreciate the role of contexts for relevant learning, it is helpful to think of contexts as students’ frames of reference. When they are learning in a contextualized way, students are grounding abstract ideas and new information in familiar real-life situations. In a classroom in which contextualized teaching is happening, concepts and theories are related to accessible and meaningful examples, illustrations and stories, which in turn inform further conceptual and theoretical understandings.

Effective teamwork and collaboration and mathematics
The mathematics courses encourage students to develop an awareness of different approaches and different interpretations of mathematics. Being able to discuss and share approaches to the mathematics content being studied and justify different interpretations provides a rich and meaningful learning opportunity. Students can develop their ability to listen to and respond to one another respectfully and critically, and at times may find that their own approach or interpretation can be influenced by the views of others and that they can influence the approach or interpretation of others.

In mathematics, activities can be developed that encourage students to work effectively in teams. This may involve collaboration at the start of an activity to gather ideas, information or data; during the activity where students take on different roles, for instance analysing data, checking the work of another student, giving feedback on an approach or critiquing an interpretation of a model which helps the group make further progress; and at the end of an activity where, for instance, they might present their approaches or interpretations to the class as a group.

Group work could include using software to create activities in the form of a jigsaw or dominoes set together, a student creating a problem to be solved by one or more classmates, or mind mapping together at the start of a small project. Document-sharing packages can be used in and out of the mathematics classroom as an efficient way for students to share and create their study notes per topic. At the end of a unit of work, students can work in groups to pool their understandings and their understanding of the connections between a topic and others they have studied. Teachers can ask students to recap in groups at the end of each unit by adding their ideas to a poster or to an online padlet.
The exploration internal assessment provides a very valuable learning experience for students to peer review each other’s work by providing constructive feedback on their topic and their interpretation and understanding of the assessment criteria.

Teaching focused on effective teamwork and collaboration

IB programmes acknowledge that learning is a social activity. Students and teachers come together, each with unique life experiences, beliefs, ideas, strengths and weaknesses. Learning is the result of these complex interactions between unique individuals.

An important aspect of the learning process is regular feedback from students to teachers on what they have and have not yet understood. Concrete and constructive feedback from teachers to students on performance is similarly crucial for learning to take place.

Meeting the needs of all learners and mathematics

The structure of the course allows teachers to choose how they will proceed through the course and choose materials and activities that are appropriate and accessible for their students. Being able to supplement the content with a wide range of videos, technology, strategies, types of activities, etc also provides opportunities for teachers to differentiate and provide alternative approaches or interpretations on concepts or topics being discussed.

Teaching differentiated to meet the needs of all learners

IB programmes promote equal access to the curriculum for all learners. Differentiation entails planning for student differences through the use of a variety of teaching approaches, implementing a variety of learning activities and making a variety of formats and modes of exploring knowledge and understanding available to students. It also involves identifying, with each student, the most effective strategies to develop, pursue and achieve realistic and motivational learning goals. In the context of an IB education, special consideration often needs to be given to students’ language backgrounds and skills. Affirming students’ identity and valuing their prior knowledge are important aspects of treating students as unique individuals and helping them develop holistically as young people.

Assessment and mathematics

Both the internal and external assessment tasks of mathematics reflect the aims of the course. Being able to demonstrate critical thinking and problem solving is essential to mathematics and the assessments are designed to facilitate this. The internal assessment exploration is an opportunity for students to demonstrate their understanding and insights into an area of mathematics that is of interest to them, and to participate in an activity which gives them an insight into what it means to be a mathematician.

Students should be introduced to the assessment criteria of the course early on and these should be regularly referred to in terms of the skills being developed throughout the learning process. Students must have a clear understanding of how they will be assessed, and the expectations of the course.

Teacher feedback is crucial and should allow students to monitor their progress and reflect upon their learning and skills development.

Teaching informed by assessment (formative and summative)

Assessment plays a crucial role in IB programmes in supporting and measuring learning. Formal Diploma Programme assessments are based on course aims and objectives and, therefore, effective guidance of these requirements also ensures effective teaching. Formative assessments developed by teachers are tools and processes to improve student learning. Here, feedback is most effective as a two-way process: students learn how they are doing and teachers learn what students understand, struggle with, and find engaging. In addition to assessment tasks, such feedback can be provided more informally.
Thinking skills and mathematics

Thinking skills, and particularly critical thinking, are developed and practised continuously in mathematics; students are challenged to apply their knowledge and skills to unfamiliar contexts or to abstract problems. Thinking skills are further developed through the emphasis in the teaching on conceptual understanding and making the links between different topics. Students of mathematics are encouraged to engage with the approaches or interpretations of problems critically.

Thinking skills

IB programmes pride themselves on giving students opportunities to develop their thinking skills and an awareness of themselves as thinkers and learners. Being “thinkers” is one of the IB learner profile attributes, and is defined in terms of exercising initiative in applying thinking skills critically and creatively to recognize and approach complex problems, and make reasoned, ethical decisions.

Thinking skills consist of a large number of related skills. In the Diploma Programme, particular emphasis is placed on skills such as metacognition, reflection, critical thinking, creative thinking, and transfer. Metacognition, or control over one’s cognitive processes of learning, can be thought of as a foundation for developing other thinking skills. When practising metacognition, students think about the ways in which they process information, find patterns, and build conceptual understandings. Once they become aware that they are using a variety of techniques and strategies to perform even the most basic learning tasks, students can be encouraged to consider if there are more effective or efficient ways to achieve the same learning, try out these new ways and evaluate them. Similarly, reflection is a thinking skill that plays a critical role in improving learning. When practising reflection, students think about the success, value or otherwise of their learning. The Diploma Programme course aims, assessment objectives and assessment tasks place a premium on higher-order thinking skills, such as critical thinking, creative thinking and transfer.

Communication skills and mathematics

In mathematics, communication skills are practised in a number of different ways; as a subject it invites approaches to teaching that encourage dialogue and discussion, but also requires a reflective engagement with the way in which the mathematics is expressed both verbally and in writing. This discussion can reveal alternative perspectives to problem solving.

Communication skills

Communication skills are not only important in IB programmes but are also an essential part of a wider dynamic in the learning community: they help to form and maintain good relationships between students, and between students and adults. Furthermore, being able to communicate well contributes to the development of students’ self confidence and enhances their future prospects, as communication skills are a critical ingredient of success in working life.

Communication skills consist of a cluster of different skills and forms of communication. The ability to listen and understand various spoken messages, to read and understand diverse written texts and other forms of media, and to respond clearly and convincingly in spoken, written and digital form are all part of how students engage with others in the world. Some of these forms of communication are independent of era and culture, but interacting in and with the digital space is a significant part of most students’ communication and social interaction. Online activities, which are often collaborative in nature, present exciting opportunities for the development of students’ communication skills.

Social skills and mathematics

There are strong correlations between social skills, affective skills and the ability to reflect. These all play a very important role in mathematics. Much of the content and skills students develop will provoke students to consider their own understandings and how these are expressed to others. Students should be...
challenged to think about the relationship between the learner profile attributes and mathematics. For example, how do the attributes of caring and being principled relate to what they are learning in mathematics? The structure of the DP mathematics guides provides students with opportunities to appreciate the contributions that other cultures have made to the understanding of mathematics. This, and the section in the guide referring to international-mindedness, can be used to provoke class discussions in which students will reflect on their own views and those of others.

Social skills
Closely related to, and perhaps even more important than, communication skills are social skills, whose importance in IB programmes has to do with the development of the learner as a whole and the value of a community for learning. A starting point for developing students’ social skills is to acknowledge that people differ greatly in terms of their degree of introversion or extroversion and that these differences should be respected. Similarly, different cultures have different expectations of appropriate behaviours in social situations. To be able to understand the perspectives of others, to form good relationships and to regulate one’s own emotions and behaviour are at the heart of many of the IB learner profile attributes and the IB’s aspiration to develop internationally minded students. School, being such a formative community in young people’s lives, can play a significant part in the development of their social and emotional skills.

Self-management skills and mathematics
IB learners also need to learn to persevere and be emotionally stable as individuals. Learning to manage themselves is important for students in a demanding educational programme like the Diploma Programme, as well as a highly desirable competency for their later studies and employment.

DP mathematics is a course based around problem solving, with students being required to use the inquiry and modelling cycles and often, within this framework, being required to develop their own strategies. As such, students often need to persevere when a solution is not immediately apparent. The IB promotes the development of educational opportunities for students which set challenging goals and help to develop their persistence to achieve them.

The DP mathematics courses encourage students to analyse and propose solutions to real-life problems. This is considered one of the challenges in the DP mathematics course. Self-management skills are required for students to learn to persevere through problem solving. The learners need to follow a sequential process to solve the problem which is outlined in the inquiry and modelling processes. First they have to understand the problem, then devise a plan, create possible solutions, and interpret their answers. Throughout the process students may struggle and may not be able to solve the problem. In that case it is very important that teachers foster a growth mindset with their students and emphasize that with effort, dedication and perseverance understanding can be achieved.

The internal assessment exploration task also requires students to plan and organize their time, to ensure they have appropriate research techniques and the tenacity to engage with mathematics, to reflect upon this and monitor their own progress. It is an important part of the course as it allows students to engage in authentic mathematical activity. The time allocated to the “toolkit” is designed to provide students with a variety of strategies to help support them through their study of the content and will be invaluable to their success in the internal assessment exploration.

Self-management skills
Self-management skills consist of organization skills, such as setting goals and managing time and tasks effectively, and affective skills, such as managing one’s state of mind, motivation and resilience.

Like other learning skills, self-management skills can be modelled and practised. For Diploma Programme students, time management is often a particularly pertinent organization skill. Strategies for improving time management include breaking down assignments into achievable steps and timelining each step, planning revision and study plans for tests and examinations, and building study timetables. An important aspect of such strategies is not only what they factually achieve with students’ use of time but that they give students a perception of greater control over their time.
Effective self-management skills, in turn, enable students to gain some control over their mood, their motivation, and their ability to deal with setbacks and difficulties. A school environment where students feel they have a degree of autonomy and self direction and where they do not need to get things right the first time, where challenging but not too difficult objectives are set, and even where psychological techniques such as mindfulness training are taught, can all support the development of students’ effective skills.

Research skills and mathematics
Research skills in mathematics are closely aligned with approaches to learning, focused on conceptual understanding and inquiry. Throughout the mathematics course students engage with methods and concepts developed by others. However, the internal assessment exploration gives them the opportunity to demonstrate their own engagement and understanding of an area of mathematics of interest to them. The aim of this task is to give students the experience of doing mathematics and the opportunity to reflect on this practice.

Research skills
Research skills are a central element of the inquiry-based pedagogy of IB programmes. While good research skills have always been at the heart of academic endeavour, the availability of digital resources and the explosion in the amount of information easily accessible to students make the development of research skills a particularly pertinent part of today’s education. Also, learning to work with academic integrity and respecting the intellectual contributions of others is an important aspect of learning in all IB programmes.

Fundamental research skills include formulating focused and precise research questions, appraising sources, recording, analysing, evaluating and synthesizing information, and presenting and evaluating results.

Additionally, research today requires much more validating, comparing and contrasting of available information, and narrowing down the volume of data into a manageable quantity with regard to being discerning about what is relevant. Though confident in browsing and communicating online, students often lack the information literacy skills they need for the kind of effective and self-directed research they are expected to do as part of their inquiries.
A framework for the use of cognitive academic language proficiency

IB students must become fluent in the academic language associated with each of the subjects they study so that they can fully engage and demonstrate their proficiency. Mathematics has its own language in which many everyday words have a different, and often much more precise, meaning. This language also incorporates mathematical symbols and depictions that need to be understood and interpreted. The precision is what allows mathematics to be a powerful way of knowing and forms the basis of thinking in mathematics. The agreed understanding of meanings among mathematicians globally allows them to communicate and collaborate and to make progress in their mathematical endeavours. In developing their mathematical understandings, students are developing their cognitive academic language proficiency (CALP).

The grid below is a framework to help teachers plan strategies for student CALP development as part of learning within mathematics.
Understanding the framework for planning cognitive academic language proficiency development

This framework is organized as a grid. The component skills of CALP (including thinking skills, which support academic language proficiency) are set out in rows and the pedagogy is set out in columns.

Activating background knowledge

<table>
<thead>
<tr>
<th>Cognitive Academic Language Proficiency</th>
<th>Background knowledge (BK)</th>
<th>Scaffolding for:</th>
<th>Extended CALP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKILLS</td>
<td>Activating and building up BK</td>
<td>New comprehensible input</td>
<td>New comprehensible output</td>
</tr>
<tr>
<td>Listening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speaking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interacting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thinking</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1
A framework for planning CALP development
Background knowledge is the existing knowledge a student has in terms of the language of the subject. This may be from a previous course and could be in a different language altogether. When this is activated it provides a base for new learning.

Scaffolding and practice

Scaffolding is a strategy that enables learners to build on their background knowledge to extend their learning so they can accomplish more difficult tasks. Scaffolding activities allow for contextualization so new learning input is meaningful. New learning is fully acquired through practice.

Demonstrating cognitive academic language proficiency

Independently demonstrating and applying new CALP in novel and varied situations is a sign of successful learning. This new learning will become part of a student’s background knowledge upon which more new and extended learning can be built during the next cycle.

Using the framework for planning cognitive academic language proficiency development

It is not expected that every single box on the framework will be completed in detail in each case. A lesson is often likely to focus on only some skills and aspects of pedagogy. However, over a period of time or a series of lessons, it would be sound practice to ensure that all the dimensions have been adequately addressed.

Additional pedagogy: Affirming identity

Affirming student identity is a central underpinning pedagogical principle for successful learning in which the activities for developing CALP are embedded. Affirming identity includes explicitly valuing students’ skills and knowledge in all their languages and recognizing these as resources for teaching and learning new ways of thinking and knowing.

The following activities have been designed to develop CALP in mathematics.

- **Working with numbers** written in the form $a \times 10^k$ where $1 \leq a < 10$ and k is an integer
- The analysis of graphs
- **Working with vectors and equations of straight lines**
There are numerous ways of structuring the Diploma Programme mathematics courses. The 60 hours of content common to the SL courses and the SL courses being a subset of the HL courses allows many different models of delivery to be considered. This allows schools to consider what will work in their own context and adopt the model which best suits their needs.

The mathematics guides, published in 2019 for first assessment in 2021, contain full details of the courses in terms of their nature and content. This TSM section on structuring the mathematics classes is designed to help teachers and schools think about the different ways that the classes could be structured.

The precise model used in a school could depend on many factors including:

• the needs of the students, their abilities, aspirations and motivations
• the resources available, including number of teachers and classrooms
• the skillset of the teachers
• the number of students taking a particular course
• timetabling and scheduling constraints
• the ratio of lessons for SL:HL is 5:8 (150 hours vs 240 hours).

When considering these factors, it is also worth keeping in mind that Mathematics: analysis and approaches at SL and HL will involve the extensive use of technology and it might be desirable for some lessons to have access to a suite of computers or other devices to support the teaching and learning of mathematics.

General considerations

Whichever model is used for the teaching of mathematics (considering the different approaches used in the two subjects) there will be opportunities for collaboration between groups of students studying different courses. The benefits of this are to enable students to appreciate the cohesive nature of mathematics and how their learning is interrelated. This might be while working on the internal assessment, for an inquiry-based lesson on the common content, or in applications of technology where students from one course can support students in another course.

Whichever model is used by schools, it is important that planning and reflection with the faculty/department takes place on a regular basis.

Depending on the teaching order of the topics, a school may allow students to move between SL and HL, or even between Mathematics: analysis and approaches, and Mathematics: applications and interpretations at an early point. It will be hoped that a number of students choosing to take an SL course at the beginning of their Diploma Programme studies, who then discover a passion for the type of mathematics they have chosen, will and can decide to take the HL course.

Model 1

Four separate classes where both Mathematics: analysis and approaches, and Mathematics: Applications and interpretations HL are taught separately similarly for the two SL courses. All four courses can be taught throughout the two years of the Diploma Programme allowing for concurrency of learning.

A school could also adapt this model and offer three (or two) of the four courses.

<table>
<thead>
<tr>
<th>Year 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course 1</td>
</tr>
<tr>
<td>Course 2</td>
</tr>
</tbody>
</table>
Model 2
Both SL courses are taught as a subset of lessons of their respective HL courses. This means that for every eight scheduled lessons, SL students are present for five of these lessons alongside HL students. HL students have an additional three lessons on their own. This model would allow for both subjects to be offered at SL and HL using two teachers, although classes could be split and taught with more than one teacher.

Schools will need to take care in selecting topics, especially at the start of the course so that they are not introducing AHL material which requires the SL content to have been covered previously. The guides are not scope and sequence, or scheme of work documents. However, their structure guides makes clear the common content, the SL content and the AHL content.

Model 3
A combination of models 1 and 2 where a school may have three DP Mathematics teachers.
Mathematics: Applications and interpretation is offered with SL and HL being taught separately throughout the two years, and Mathematics: analysis and approaches is taught as a combined class in the manner of model 2, or vice versa.
Structuring the courses and making connections

Incorporating the IB learner profile

DP mathematics courses at SL and HL are closely linked to and aim to engage students with the attributes of the IB learner profile. For example, the requirements of the internal assessment provide opportunities for students to develop every aspect of the profile. For each aim suggested, learner profile attributes are referenced below. Teachers are encouraged to discuss the interrelationship of the IB learner profile attributes and the aims of the mathematics course with their students. Some of the 10 learner profile attributes sit very easily with mathematics and students should be encouraged to think about those that do not immediately spring to mind when thinking about what it is to be a mathematician.

A discussion or activity related to this at the beginning and at points during the course can be a useful exercise for students to reflect upon their own development in terms of the learner profile attributes and as mathematicians.

<table>
<thead>
<tr>
<th>Link to mathematics aims</th>
<th>Learner profile attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop a curiosity and enjoyment of mathematics, and appreciate its elegance and power</td>
<td>Inquirer</td>
</tr>
<tr>
<td>Develop an understanding of the concepts, principles and nature of mathematics</td>
<td>Knowledgeable</td>
</tr>
<tr>
<td>Communicate mathematics clearly, concisely and confidently in a variety of contexts</td>
<td>Communicator</td>
</tr>
<tr>
<td>Develop logical and creative thinking, and patience and persistence in problem solving to</td>
<td>Thinker, balanced</td>
</tr>
<tr>
<td>instil confidence in using mathematics</td>
<td></td>
</tr>
<tr>
<td>Employ and refine their powers of abstraction and generalization</td>
<td>Reflective</td>
</tr>
<tr>
<td>Take action to apply and transfer skills to alternative situations, to other areas of</td>
<td>Open-minded, risk-takers</td>
</tr>
<tr>
<td>knowledge and to future developments in their local and global communities</td>
<td></td>
</tr>
<tr>
<td>Appreciate how developments in technology and mathematics influence each other</td>
<td>Knowledgeable, reflective</td>
</tr>
<tr>
<td>Appreciate the moral, social and ethical questions arising from the work of mathematicians and the applications of mathematics</td>
<td>Principled, caring</td>
</tr>
<tr>
<td>Appreciate the universality of mathematics and its multicultural, international and</td>
<td>Open-minded</td>
</tr>
<tr>
<td>historical perspectives</td>
<td></td>
</tr>
<tr>
<td>Appreciate the contribution of mathematics to other disciplines, and as a particular “area of knowledge” in the TOK course</td>
<td>Knowledgeable, balanced</td>
</tr>
<tr>
<td>Develop the ability to reflect critically upon their own work and the work of others</td>
<td>Reflective, communicator</td>
</tr>
<tr>
<td>Independently and collaboratively extend their understanding of mathematics</td>
<td>Inquirer</td>
</tr>
</tbody>
</table>
Time has been allocated within the teaching hours for students to undertake the types of activities that mathematicians in the real world undertake, and to allow students time to develop the skill of thinking like a mathematician; in other words, providing students with a mathematical “toolkit” which will allow them to approach any type of mathematical problem. Underpinning this are the six pedagogical approaches to teaching and the five approaches to learning which support all IB programmes. This time gives students opportunities in the classroom for undertaking an inquiry-based approach and focusing on conceptual understanding of the content, developing their awareness of mathematics in local and global contexts, gives them opportunities for teamwork and collaboration as well as time to reflect upon their own learning of mathematics.

Students should be encouraged to actively identify skills that they might add to their personal mathematics “toolkit”. Teachers are encouraged to make explicit where these skills might transfer across areas of mathematics content and allow students to reflect upon where these skills transfer to other subjects the student is studying.

This section contains ideas and resources that teachers can use with their students to encourage the development of mathematical thinking skills. These resources have been developed by experienced teachers for use in their own classrooms. They have a content focus to give them a context but are not exhaustive.

The example activities have been designed to be used in three different ways. The first is that they could be used by teachers with their students as they stand, the second is that teachers could adapt the materials for their own context and the third is that they might inspire teachers to develop their own materials, perhaps using the same technique but with different content.

- Cognitive activators–engaging starting points
- Conceptual understandings–making use of the statements of conceptual understanding from the guide
- Using technology–some subject specific examples of the ways in which technology can be used to teach certain skills or topics.
- Modelling–an example of a modelling activity with notes as to why it is a good example
Cognitive activators can be thought of as the strategies we use to get students ready to learn and engage with the subject material. Cognitive activators serve to introduce a new topic or concept and from there can lead into subsequent learning activities to acquire a certain skill or knowledge within a topic. They relate strongly to the activation phase of the cognitive proficiency in academic language. In this section several examples are provided to serve as examples of cognitive activators. They can be thought of as an implementation of the approaches to teaching which describe the key pedagogical principles that underpin the IB programme.

The strategies presented are based upon the approaches to learning (ATL) and recent research outcomes such as the Harvard visible thinking project (see “Further reading for teachers and students”).

As teachers we might not always be aware when we are (or are not) using cognitive activators when starting a new topic or lesson, but it is generally thought to be pedagogically sound to create some context or give some introduction to the students before launching into something new. Then, while studying the topic we can better rely on our students to develop their inquiry and thinking skills to learn mathematics, rather than being instructed on a specific mathematical procedure. Being explicit about this is in itself a strategy that can help students to engage in learning experiences and become more self-managed in their approach to learning. Cognitive activation is thus meant to activate students, engaging them in the topic and preparing them to discover the new material.

The following is a selection of strategies used by experienced IB teachers in their mathematics classes. These are aimed to inspire and guide teachers to adapt and use them in their own classrooms. Some of the common elements of cognitive activators are:

- connecting to previous learning on the topic or different topics within the same concept (for example, to introduce the “average rate of change” one could activate students by reminding them of the concept of “change”, the slope of a line or increasing versus decreasing)
- starting with an essential question that can be understood by the students but only successfully answered by the new learning material. This can be supported by, for example,. a random group generator, no-hands-up activity, think pair share etc. to organize collaboration.
- an activity that enables students to start their work on the topic
- ideas for reflection and/or extension to further topics.

In essence, cognitive activation is about teaching students the strategies that encourage them to think more deeply in order to find solutions and to focus on the method they use to reach the answer rather than simply focusing on the answer itself. As such, it is a useful introduction to the skills needed for the internal assessment exploration. When considering other resources within this toolkit, teachers and students will recognize elements of cognitive activation within them.

Cognitive activation has been identified as one of several practices that support the development of mathematical literacy.
The aim of this section of the TSM is to facilitate the use of the mathematics concepts by teachers to enhance learning within the classroom and therefore promote deeper understanding. Concepts are important because they increase mathematical understanding and allow students to make connections and generalizations which are key in problem solving. This in turn makes students less reliant on learned techniques and structures and more able to think creatively when faced with more complex problems.

The concepts

The DP mathematics courses identify 12 fundamental concepts as shown below. These can inform units of work and can help to organize teaching and learning. Explanations of each of these concepts in a mathematical context have also been provided. Teachers may identify and develop additional concepts as required by local circumstances and national or state curricula.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximation</td>
<td>This concept refers to a quantity or a representation which is nearly but not exactly correct.</td>
</tr>
<tr>
<td>Change</td>
<td>This concept refers to a variation in size, amount or behaviour.</td>
</tr>
<tr>
<td>Equivalence</td>
<td>This concept refers to the state of being identically equal or interchangeable, applied to statements, quantities or expressions.</td>
</tr>
<tr>
<td>Generalization</td>
<td>This concept refers to a general statement made on the basis of specific examples.</td>
</tr>
<tr>
<td>Modelling</td>
<td>This concept refers to the way in which mathematics can be used to represent the real world.</td>
</tr>
<tr>
<td>Patterns</td>
<td>This concept refers to the underlying order, regularity or predictability of the elements of a mathematical system.</td>
</tr>
<tr>
<td>Quantity</td>
<td>This concept refers to an amount or number.</td>
</tr>
<tr>
<td>Relationships</td>
<td>This concept refers to the connection between quantities, properties or concepts; these connections may be expressed as models, rules or statements. Relationships provide opportunities for students to explore patterns in the world around them.</td>
</tr>
<tr>
<td>Representation</td>
<td>This concept refers to using words, formulae, diagrams, tables, charts, graphs and models to represent mathematical information.</td>
</tr>
<tr>
<td>Space</td>
<td>This concept refers to the frame of geometrical dimensions describing an entity.</td>
</tr>
<tr>
<td>Systems</td>
<td>This concept refers to groups of interrelated elements.</td>
</tr>
<tr>
<td>Validity</td>
<td>This concept refers to using well-founded, logical mathematics to come to a true and accurate conclusion or a reasonable interpretation of results.</td>
</tr>
</tbody>
</table>

Ideas about how to use the concepts

The concepts can be used in many different ways and teachers can decide on approaches appropriate to their own classes and contexts. The 12 concepts need not be used in each topic but should be developed across the whole curriculum as and when appropriate.
Different concepts provide different approaches to learning a topic and also enable links to be made within topics, across topics and to other subject areas.

Each topic in the guide begins by stating the essential understanding(s) of the topic and gives some suggested content-specific statements of conceptual understanding. Teachers are encouraged to develop their own statements.

These tasks illustrate how the concepts and teaching for conceptual understanding can be implemented.

- **Bearings are not boring**—SL analysis
- **The partnership of sine and cosine**—HL analysis
The use of technology is an integral part of DP mathematics courses. Developing an appreciation of how developments in technology and mathematics have influenced each other is one of the aims of the courses and using technology accurately, appropriately and efficiently both to explore new ideas and to solve problems is one of the assessment objectives. Learning how to use different forms of technology is an important skill in mathematics and time has been allowed in each topic of the syllabus and through the “toolkit” in order to do this.

Technology is a powerful tool in mathematics and in recent years increased student and teacher access to this technology has supported and advanced the teaching and learning of mathematics. Discerning use of technology can make more mathematics accessible and motivating to a greater number of students.

Teachers can use technology to support and enhance student understanding in many ways including:
- to bring out teaching points
- to address misconceptions
- to aid visualisation
- to enhance understanding of concepts that would otherwise be restricted by lengthy numerical calculations or algebraic manipulation
- to support students in making conjectures and checking generalizations
- to explicitly make the links between different mathematical representations or approaches.

Students can also use technology to engage with the learning process in many ways, including the following:
- to develop and enhance their own personal conceptual understanding
- to search for patterns
- to test conjectures or generalizations
- to justify interpretations
- to collaborate on project-based work
- to help organize and analyse data.

In the classroom teachers and students can use technology working individually or collaboratively to explore mathematical concepts. Key to successful learning of mathematics with technology is the fine balance between the teacher and student use of technology, with carefully chosen use of technology to support the understanding and the communication of the mathematics itself.

Many topics within the DP mathematics courses lend themselves to the use of technology. Graphical calculators, dynamic graphing software, spreadsheets, simulations, apps, dynamic geometry software and interactive whiteboard software are just a few of the many kinds of technology available to support the teaching and learning of mathematics.

Within the guide the term “technology” is used for any form of calculator, hardware or software that may be available in the classroom. The terms “analysis” and “analytic approach” are generally used in the guide to indicate an algebraic approach that may not require the use of technology. It is important to note there will be restrictions on which technology may be used in examinations, which will be detailed in relevant documents.
Monte Carlo simulations

Modern technology allows us to answer many questions to a high degree of accuracy, even if we cannot find the exact solution. One extremely powerful modern method of doing this is called Monte Carlo simulation, where we use random numbers to generate many possible sets of data and use this to investigate the question.

Although computers are an important part of the simulation process there are still three key skills which students need to develop. In many situations, these are far more important mathematical skills than the analytic methods traditionally emphasized in mathematics teaching.

• Describing the situation mathematically
• Converting this description into a computer simulation
• Interpreting the results of the simulation, including realising when a simulation fails

The following two classic examples of simulation should give students a valuable insight into modern mathematics and allow them to develop these skills. Sample datasets are available here as well, which can be adapted or used as a model for creating original datasets.

| Shooting arrows at a target |
| Shooting arrows at a target–dataset |
| Overloading lifts |
| Overloading lifts–dataset |
Modelling is an important skill in mathematics and is becoming increasingly important as technology expands the bounds of what can and cannot be modelled. The guide gives an introduction and overview of the modelling process. Here we give one example of a modelling activity which has been designed to bring out the most important stages of modelling and act as an example of what the modelling cycle below looks like when this type of activity is carried out in the classroom.

The guide defines a range of different functions to be used for modelling and guidance is given as to the different contexts where these functions could arise. There are many resources with data available online, however it is often more engaging for students to gather their own data if the context allows this. The cycle of mathematical modelling is illustrated below.

The following activity seeks to bring out the important elements of mathematical modelling.

Poachers on the game reserve–student activity
Poachers on the game reserve–teacher notes
Proof in mathematics is an essential element in developing critical thinking. Engaging students in the process of proving a statement enables a deeper understanding of mathematical concepts.

The value of proving a statement is multifaceted as it helps students to develop the following skills:

- groupwork
- interpersonal skills
- reasoning
- research
- oral and written communication
- creative thinking
- organization.

At SL students will be exposed to simple deductive proofs. The types of proof covered include deduction, described in the guide as transforming a LHS statement to a RHS statement (or vice versa). The principles that inform these support materials are for students to develop the habit of reviewing examples of a general statement to be proved before embarking on a full generalization. The process and manipulations involved in verifying statements are often a good guide to the process and manipulations required to prove a generalised statement.

Once the examples have been reviewed, students are encouraged to write the general statement in algebraic form (note that geometric proof is not covered in the SL content). Although the general statement may already be in algebraic form, this is not always the case. For example: “prove that an even number multiplied by an odd number is always even”.

At HL students will focus on proof by deduction, proof by contradiction, and proof by induction. Proof by counter example is also included, as proofs that show statements to be sometimes true or never true. The principles that inform these support materials are that students should learn to develop a good understanding of the different types of proof and develop the idea of making decisions about using different types of proof appropriately and for themselves. Students will also develop the ability to look at examples of a statement to be proved to support the process of deciding the best type of proof to use.

The following material is designed to support teachers in using student-centred and group-based activity in the teaching of proof. Different techniques used include evaluating statements using “always true, sometimes true, never true” activities, and matching and sorting activities encouraging students to consider the structure of mathematical proof. The proofs presented are not exhaustive and teachers are encouraged to adapt the ideas presented for their use.

Standard level

<table>
<thead>
<tr>
<th>Introduction to different types of proof (SL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>An exercise to evaluate statements as always true, sometimes true and never true, as well as choosing appropriate types of proof (SL)</td>
</tr>
<tr>
<td>The proof game—an exercise to build justifications of general statements using different types of proof, and create general statements for proof (SL)</td>
</tr>
</tbody>
</table>

Higher level

<table>
<thead>
<tr>
<th>Introduction to different types of proof (HL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>An exercise to evaluate statements as always true, sometimes true and never true, as well as choosing appropriate types of proof (HL)</td>
</tr>
</tbody>
</table>
The proof game—an exercise to build justifications of general statements using different types of proof, and create general statements for proof (HL)
How to use this section of the teacher support material

This teacher support material (TSM) is designed to support new and experienced teachers as they approach and implement the internal assessment (IA) with their students. It should be read in conjunction with the Diploma Programme Mathematics: analysis and approaches guide (published February 2019 for first examination in 2021), which contains the curriculum and assessment requirements at standard level (SL) and at higher level (HL).

This section offers suggestions and guidance for the implementation of the internally assessed component—the exploration. General regulation and procedures relating to internal assessment have not been reproduced here but can be found in the relevant section of the Diploma Programme Assessment procedures.

To look at these, teachers should simply select the section that they wish to look at from the menu on the left. This publication contains material contributed by teachers to help other teachers and is intended to provide support and inspiration in a number of ways.

Another section of the TSM shows the application of the criteria in the assessment of explorations. It consists of explorations that have been assessed by experienced teachers using the assessment criteria. To look at the explorations featured in the assessed student work, teachers should select “Examples of explorations” from the menu on the left and select a specific exploration by clicking on the title. Each exploration can also be accessed by selecting the link that leads directly to it from the menu on the left.

The internally assessed component in these courses is a mathematical exploration. This is a short report written by the student, based upon a topic chosen by him or her, and it should focus on the mathematics of that particular area. The emphasis is on mathematical communication (including formulae, diagrams, graphs and so on), with accompanying commentary, good mathematical writing and thoughtful reflection. A student should develop his or her own focus, with the teacher providing feedback via, for example, discussion and interview. This will allow all students to develop an area of interest for them, without a time constraint as in an examination, and will allow all to experience a feeling of success.

In addition to testing the assessment objectives of the courses, the exploration is intended to provide students with opportunities to increase their understanding of mathematical concepts and processes, and to develop a wider appreciation of mathematics. These are noted in the aims of the courses, in particular aims 6-11. It is intended that, by doing the exploration, students benefit from the mathematical activities undertaken and find them both stimulating and rewarding. It will enable students to acquire the attributes of the IB learner profile.

Teacher responsibilities

The teacher has nine main responsibilities.

During the process:

• to advise students in choosing an appropriate topic for an exploration
• to provide opportunities for students to learn the skills related to exploration work
• to ensure that students understand the assessment criteria and how they will be applied
• to encourage and support students throughout the research and writing of explorations
• to provide students with feedback on work completed at various stages of the exploration
to give assistance to individual students in overcoming particular problems.

At the end of the process:

- to verify the accuracy of all calculations and to indicate on the exploration where mistakes have been made
- to assess the work accurately, annotating it appropriately to indicate where achievement levels have been awarded
- to ensure that students fully understand the strengths and weaknesses of the exploration.

It is important that relevant background information and comments regarding each criterion are included with the sample. It is recommended that this be indicated on the work itself.

Skills and strategies required by students

The exploration is a significant part of the course. It is useful to think of it as a developing piece of work, which requires particular skills and strategies. As a general rule, it is unrealistic to expect all students to have these specific skills and to follow particular strategies before commencing the course.

Many of the skills and strategies identified below can be integrated into the course of study by applying them to a variety of different situations both inside and outside the classroom. In this way, students can practise certain skills and learn to follow appropriate strategies in a more structured environment before moving on to working independently on their explorations.

Choosing a topic

It is essential that students choose a topic that can offer a productive route of inquiry, involve the use of relevant mathematics and engage the interest and enthusiasm of the student. The concept of the exploration should be introduced early in the course. Ideas for topics for explorations should be identified by students, in discussion with their teachers, as the course progresses.

For the majority of students, finding a suitable topic is the most difficult part of the process. Consequently, as soon as students are ready to begin work on their explorations, the teacher should allocate class time over two to three weeks to guide individual students through this process.

At the start of the process, teachers should discuss with students the overall form of the assessment as this may, in part, help to direct the flow of ideas and ultimately the focus of the exploration. Whole-class discussions where ideas are shared may help to lend focus to a topic. For students who have difficulty in choosing a topic, the following ideas may help.

- Identify an appropriate topic, taking into consideration a student’s own areas of interest
- Consider whether the focus will be analytic or an application of mathematics
- Look at the list of titles that have been submitted previously
- Look at the exemplars available here and consider the structure and features that have made them successful

Once a topic has been chosen:

- devise a focus that is well defined and appropriate
- make a detailed plan to give structure to the undertaking and the writing of the exploration
- ensure that the topic lends itself to a concise exploration
- if using data, ensure that enough data can be generated to ensure the mathematical techniques used are valid.

A list of previously submitted titles can be found in the appendices.

Presentation

- Express ideas clearly
- Identify a clear aim for the exploration
- Focus on the aim and avoiding irrelevance
• Structure ideas in a logical manner
• Include graphs, tables and diagrams at appropriate places
• Edit the exploration so that it is easy to follow
• Cite references where appropriate

Mathematical communication
• Use appropriate mathematical language and representation
• Define key terms and variables, where required
• Select appropriate mathematical tools (including information and communication technology)
• Set out any proofs in a logical way
• Express results to an appropriate degree of accuracy

Personal engagement
• Ask questions, make conjectures and investigate mathematical ideas
• Read about mathematics and research areas of interest
• Look for and create mathematical models for real-world situations
• Consider historical and global perspectives
• Explore unfamiliar mathematics

Reflection
• Discuss the implications of results
• Consider the significance of the exploration
• Look at possible limitations and/or extensions
• Make links to different fields and/or areas of mathematics
• Consider “what next?”

Use of mathematics
• Demonstrate knowledge and understanding
• Apply mathematics in different contexts
• Apply problem-solving techniques
• Recognize and explain patterns, where appropriate
• Generalize and justify conclusions

Use of technology
Assessment objective 4 for all DP mathematics courses is to “use technology accurately, appropriately and efficiently both to explore new ideas and to solve problems”.

The exploration may offer opportunities for this objective to be achieved, although this is not a requirement for the exploration. In the exploration there are no limitations on the use of technology. It is reasonable, but not essential, to expect that students, when producing their explorations, will utilize technology in one or more ways.

Examples may include:
• any kind of calculators, hand-held or on the internet
• data-logging devices, simulations and modelling software
• word-processing packages, spreadsheets, graphics packages
• dynamic geometry software
• statistics packages or computer algebra packages.
Developing the exploration

Although the exploration is likely to be written in the second year of the course, students should be made familiar with the concept of the exploration at a very early stage. The specific planning and timing of the exploration will vary from school to school.

The following are suggestions that could be adopted at the different stages of the exploration.

Before students start the exploration
- Give out the criteria and stimuli early in the course and familiarize students with aims 6-11
- Give notice of a time frame for doing the exploration
- Encourage students to keep a record of ideas during the course (journal, notebook, blog)
- Encourage students to look for ideas everywhere (for example, reading mathematical material), and give access to such material (for example, TV, internet, other courses)
- Point out opportunities for exploring mathematics in everyday syllabus work
- Give students opportunities to practise mathematical writing
- Familiarize students with available technology

At the beginning of the exploration
- Look at examples from the TSM or other students' work
- Brainstorm and/or use mind-mapping activities to find a suitable topic
- Encourage the sharing and questioning of ideas
- Ensure that students have a clear, written focus before starting to write the exploration.

While students are doing the exploration
- Encourage self assessment and peer assessment
- Provide opportunities for discussion and questions between peers and with the teacher
- Provide appropriate feedback on the draft

After students have submitted the exploration
- Ensure that internal standardization between teachers takes place, including between SL and HL mathematics teachers
- Discuss with students the strengths and weaknesses of their exploration
1. Ensure that students have time to explore the mathematics.
2. Give a realistic deadline for submission of a draft of the written exploration.
3. Give a realistic deadline for feedback to the students.
4. Give a realistic deadline for final submission.

Developing a schedule

Deadlines for the completion of different stages of the exploration, preferably agreed to by both student and teacher, need to be firmly established. In particular, there need to be deadlines for the submission of:

- the exploration title and a brief description of the task, outlining the purpose of the exploration together with the strategies and techniques that will be used and, if applicable, how data is to be collected or generated, and how stimulus material has been used to generate ideas
- the draft of the exploration
- the finished exploration.

Long-term planning

The aim of long-term planning is to put the exploration into perspective in relation to the whole course. It should take into account:

- the sequencing of teaching units over the duration of the course
- those topics that are more applicable to the exploration
- appropriate places where the skills and strategies of the exploration can be introduced
- opportunities for students to record and develop ideas relevant to the exploration, for example, journals or blogs
- the resources available
- the role, if any, that the exploration will play in terms of a school's non-IB assessment(s)
- timetabling exploration deadlines into the school calendar.

Short-term planning

The aim of short-term planning is to provide a framework for the exploration so that students gain the maximum benefit from the experience.

It is expected that teachers will give help and guidance to the students while they are doing the exploration. Ten hours of class time should be allocated to management of the exploration work. Some of this time can be taken up with individual or group activities, where students learn some of the skills associated with exploration work. It is expected that students will spend additional time working on their explorations outside class time. Teachers should briefly discuss the exploration early during the course, so that students are aware of what is required and that this is an essential part of the course.

Stimuli

Students sometimes find it difficult to know where to start with a task as open-ended as this. While it is hoped that students will appreciate the richness of opportunities for mathematical exploration, it may sometimes be useful to provide a stimulus as a means of helping them to get started on their explorations.
Possible stimuli that could be given to the students

- sport
- archaeology
- computers
- algorithms
- cell phones
- music
- sine
- musical harmony
- motion
- e
- electricity
- water
- space
- orbits
- food
- volcanoes
- diet
- Euler
- games
- symmetry
- architecture
- codes
- the internet
- communication
- tiling
- population
- agriculture
- viruses
- health
- dance
- play
- π (π)
- geography
- biology
- business
- economics
- physics
- chemistry
- information technology in a global society
- psychology

A possible mind map for the stimulus “water”

During introductory discussions about the exploration, the use of group discussion sessions can be useful to generate ideas. In particular, the use of a mind map has been shown to be useful in helping students to generate thoughts on this. The mind map below illustrates how, starting with the stimulus “water”, some possible foci for a mathematical exploration could be generated.
Record keeping

Teachers are advised to keep detailed records about the exploration. It may be helpful to use forms such as forms A and B, for recording all the relevant information at the planning and feedback on the draft stages; these forms can be adapted for your own use. Please note that these are internal documents for the teacher and are not official IB forms.

Use of these forms is not mandatory and the forms can be adapted for individual circumstances. They have been suggested by a number of experienced teachers who have found them to be very useful. Form A (Initial planning) relates to the end of the initial planning stage and Form B (Teacher feedback to student on draft) relates to the teacher feedback following the students’ submission of their draft explorations.

Form A—Exploration: Initial planning
Form B—Exploration: Teacher feedback to student on draft
Authenticity must be verified by signing the relevant form from the Diploma Programme Assessment procedures by both student and teacher.

By supervising students throughout, teachers should be monitoring the progress that individual students are making and be in a position to discuss with them the source of any new material that appears, or is referred to, in their explorations. Often students are not aware of when it is permissible to use material written by others or when to seek help from other sources. Consequently, open discussion in the early stages is a good way of avoiding these potential problems.

However, if teachers are unsure as to whether an exploration is the student’s own work, they should employ a range of methods to check this fact. These may include:

- discussion with the student
- asking the student to explain the methods used and to summarize the results and conclusions
- asking the student to replicate part of the analysis using different data
- inviting the students to give a class presentation of their exploration.

Referencing and bibliography

Students should be made aware that direct or indirect use of the words of another person (in written, oral or electronic formats) must be acknowledged appropriately, as must any visual material used in the exploration that has been derived from another source. A student’s failure to comply with this requirement will be viewed as plagiarism, and, as such, may be treated as a case of malpractice. Students should be familiar with the IB academic honesty policy, available on the programme resource centre.

The bibliography, or list of references, should include only those works (for example, books and journals) that the student has consulted while working on the exploration. An accepted form of quoting and documenting sources should be applied consistently. The major documentation systems are divided into two groups: parenthetical in-text name–date systems and numbered systems. Either may be used, provided this is done consistently and clearly.

Each work consulted, regardless of whether or not it has already been cited in the text as a reference, must be listed in the bibliography. The bibliography should specify: author(s), title, date and place of publication, and the name of the publisher, and should follow consistently one standard method of listing sources (for example, the Harvard system or the Vancouver system). Possible examples are:

Each exploration should be assessed against the following five criteria.

<table>
<thead>
<tr>
<th>Criterion A</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion B</td>
<td>Mathematical communication</td>
</tr>
<tr>
<td>Criterion C</td>
<td>Personal engagement</td>
</tr>
<tr>
<td>Criterion D</td>
<td>Reflection</td>
</tr>
<tr>
<td>Criterion E</td>
<td>Use of mathematics</td>
</tr>
</tbody>
</table>

The descriptions of the achievement levels for each of these five assessment criteria follow and it is important to note that each achievement level represents the minimum requirement for that level to be awarded. The final mark for each exploration is obtained by adding together the achievement levels awarded for each criterion A-E. It should be noted that the descriptors for criterion E are different for SL and HL.

The maximum possible mark is 20.

Applying the assessment criteria

The method of assessment used is criterion referenced, not norm referenced. That is, the method of assessing each exploration judges students by their performance in relation to identified assessment criteria and not in relation to the work of other students.

Each exploration submitted for mathematics SL or mathematics HL is assessed against the five criteria A to E. For each assessment criterion, different levels of achievement are described that concentrate on positive achievement. The description of each achievement level represents the minimum requirement for that level to be achieved.

The aim is to find, for each criterion, the level descriptor that conveys most adequately the achievement level attained by the student.

Teachers should read the description of each achievement level, starting with level 0, until one is reached that describes a level of achievement that has not been reached. The level of achievement gained by the student is therefore the preceding one, and it is this that should be recorded.

For example, when considering successive achievement levels for a particular criterion, if the description for level 3 does not apply, then level 2 should be recorded.

For each criterion, whole numbers only may be recorded; fractions and decimals are not acceptable.

The highest achievement levels do not imply faultless performance, and teachers should not hesitate to use the extremes, including 0, if they are appropriate descriptions of the work being assessed.

A student who attains a high level of achievement in relation to one criterion will not necessarily attain high levels of achievement in relation to the other criteria. Similarly, a student who attains a low level of achievement for one criterion will not necessarily attain low achievement levels for the other criteria. Teachers should not assume that the overall assessment of the students will produce any particular distribution of marks.

It is expected that the assessment criteria will be available to students at all times. Descriptors of the achievement levels for each assessment criterion are given in the tables in the following section. Within the
tables, for each achievement level, there is a link to an exploration within this TSM that achieved that level for that particular criterion.

Students should be made aware that they will not receive a grade for mathematics if they have not submitted an exploration.

Achievement levels

Criterion A: Presentation

This criterion assesses the organization and coherence of the exploration. A well-organized exploration contains an introduction, has a rationale (which includes explaining why this topic was chosen), describes the aim of the exploration and has a conclusion. A coherent exploration is logically developed and easy to follow.

Graphs, tables and diagrams should accompany the work in the appropriate place and not be attached as appendices to the document.

<table>
<thead>
<tr>
<th>Achievement level</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The exploration does not reach the standard described by the descriptors below.</td>
</tr>
<tr>
<td>1</td>
<td>The exploration has some coherence or some organization.</td>
</tr>
<tr>
<td>2</td>
<td>The exploration has some coherence and shows some organization.</td>
</tr>
<tr>
<td>3</td>
<td>The exploration is coherent and well organized.</td>
</tr>
<tr>
<td>4</td>
<td>The exploration is coherent, well organized, concise.</td>
</tr>
</tbody>
</table>

Criterion B: Mathematical communication

This criterion assesses to what extent the student is able to:

- use appropriate mathematical language (notation, symbols, terminology)
- define key terms and variables, where required
- use multiple forms of mathematical representation such as formulae, diagrams, tables, charts, graphs and models, where appropriate
- used a deductive method and set out proofs logically where appropriate.

Students are expected to use mathematical language when communicating mathematical ideas, reasoning and findings.

Students are encouraged to choose and use appropriate ICT tools such as graphic display calculators, screenshots, graphing, spreadsheets, databases, drawing and word processing software, as appropriate, to enhance mathematical communication.

<table>
<thead>
<tr>
<th>Achievement level</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The exploration does not reach the standard described by the descriptors below.</td>
</tr>
<tr>
<td>1</td>
<td>The exploration contains some relevant mathematical communication, which is partially appropriate.</td>
</tr>
<tr>
<td>2</td>
<td>The exploration contains some relevant appropriate mathematical communication.</td>
</tr>
<tr>
<td>3</td>
<td>The mathematical communication is relevant, appropriate and is mostly consistent.</td>
</tr>
<tr>
<td>4</td>
<td>The mathematical communication is relevant, appropriate and consistent throughout.</td>
</tr>
</tbody>
</table>
Criterion C: Personal engagement
This criterion assesses the extent to which the student engages with the exploration and makes it their own. Personal engagement may be recognized in different attributes and skills. These include thinking independently and/or creatively, addressing personal interest and presenting mathematical ideas in their own way.

<table>
<thead>
<tr>
<th>Achievement level</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The exploration does not reach the standard described by the descriptors below.</td>
</tr>
<tr>
<td>1</td>
<td>There is evidence of some personal engagement.</td>
</tr>
<tr>
<td>2</td>
<td>There is evidence of significant personal engagement.</td>
</tr>
<tr>
<td>3</td>
<td>There is evidence of outstanding personal engagement.</td>
</tr>
</tbody>
</table>

Criterion D: Reflection
This criterion assesses how the student reviews, analyses and evaluates the exploration. Although reflection may be seen in the conclusion to the exploration, it may also be found throughout the exploration.

<table>
<thead>
<tr>
<th>Achievement level</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The exploration does not reach the standard described by the descriptors below.</td>
</tr>
<tr>
<td>1</td>
<td>There is evidence of limited reflection.</td>
</tr>
<tr>
<td>2</td>
<td>There is evidence of meaningful reflection.</td>
</tr>
<tr>
<td>3</td>
<td>There is substantial evidence of critical reflection.</td>
</tr>
</tbody>
</table>

Criterion E: Use of mathematics
The achievement levels and descriptors for criterion E are different for SL and HL.

SL only
This criterion assesses to what extent students use mathematics in the exploration.

Students are expected to produce work that is commensurate with the level of the course. The mathematics explored should either be part of the syllabus, or at a similar level or beyond. It should not be completely based on mathematics listed in the prior learning. If the level of mathematics is not commensurate with the level of the course, a maximum of two marks can be awarded for this criterion. A piece of mathematics can be regarded as correct even if there are occasional minor errors as long as they do not detract from the flow of the mathematics or lead to an unreasonable outcome.

<table>
<thead>
<tr>
<th>Achievement level</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The exploration does not reach the standard described by the descriptors below.</td>
</tr>
<tr>
<td>1</td>
<td>Some relevant mathematics is used.</td>
</tr>
<tr>
<td>2</td>
<td>Some relevant mathematics is used. Limited understanding is demonstrated.</td>
</tr>
<tr>
<td>3</td>
<td>Relevant mathematics commensurate with the level of the course is used. Limited understanding is demonstrated.</td>
</tr>
<tr>
<td>4</td>
<td>Relevant mathematics commensurate with the level of the course is used. The mathematics explored is partially correct. Some knowledge and understanding are demonstrated.</td>
</tr>
<tr>
<td>5</td>
<td>Relevant mathematics commensurate with the level of the course is used. The mathematics explored is mostly correct. Good knowledge and understanding are demonstrated.</td>
</tr>
<tr>
<td>Achievement level</td>
<td>Descriptor</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>6</td>
<td>Relevant mathematics commensurate with the level of the course is used. The mathematics explored is correct. Thorough knowledge and understanding are demonstrated.</td>
</tr>
</tbody>
</table>

HL only

This criterion assesses to what extent and how well students use mathematics in their exploration.

Students are expected to produce work that is commensurate with the level of the course. The mathematics explored should either be part of the syllabus, or at a similar level or beyond. It should not be completely based on mathematics listed in the prior learning. If the level of mathematics is not commensurate with the level of the course, a maximum of two marks can be awarded for this criterion.

The mathematics can be regarded as correct even if there are occasional minor errors as long as they do not detract from the flow of the mathematics or lead to an unreasonable outcome. Sophistication in mathematics may include understanding and use of challenging mathematical concepts, looking at a problem from different perspectives and seeing underlying structures to link different areas of mathematics. Rigour involves clarity of logic and language when making mathematical arguments and calculations. Precise mathematics is error-free and uses an appropriate level of accuracy at all times.

<table>
<thead>
<tr>
<th>Achievement level</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The exploration does not reach the standard described by the descriptors below.</td>
</tr>
<tr>
<td>1</td>
<td>Some relevant mathematics is used. Limited understanding is demonstrated.</td>
</tr>
<tr>
<td>2</td>
<td>Some relevant mathematics is used. The mathematics explored is partially correct. Some knowledge and understanding are demonstrated.</td>
</tr>
<tr>
<td>3</td>
<td>Relevant mathematics commensurate with the level of the course is used. The mathematics explored is correct. Some knowledge and understanding are demonstrated.</td>
</tr>
<tr>
<td>4</td>
<td>Relevant mathematics commensurate with the level of the course is used. The mathematics explored is correct. Good knowledge and understanding are demonstrated.</td>
</tr>
<tr>
<td>5</td>
<td>Relevant mathematics commensurate with the level of the course is used. The mathematics explored is correct and demonstrates sophistication or rigour. Thorough knowledge and understanding are demonstrated.</td>
</tr>
<tr>
<td>6</td>
<td>Relevant mathematics commensurate with the level of the course is used. The mathematics explored is precise and demonstrates sophistication and rigour. Thorough knowledge and understanding are demonstrated.</td>
</tr>
</tbody>
</table>
What is the difference between an exploration in mathematics and an extended essay in mathematics?
The criteria are completely different. It is intended that the exploration is to be a much less extensive piece of work than a mathematics extended essay. The intention is for students to “explore” an idea rather than have to do the formal research demanded in an extended essay.

How long should it be?
It is difficult to be prescriptive about mathematical writing. However, the Mathematics: analysis and approaches and the Mathematics: applications and interpretation guides state that 12 to 20 pages should be appropriate. An exploration may be less than 12 pages, however. A more common failing of mathematical writing is excessive repetition, and this should be avoided as such explorations will be penalized for lack of conciseness. It is recognized however that some explorations will require the use of several diagrams, which may extend them beyond the recommended page limit.

Are there any particular topics to be avoided?
A topic must be chosen so that the assessment criteria can be applied to it. Purely descriptive historical topics, for example, are not appropriate. See the appendices for a list of previously submitted titles.

When is a good time to introduce the exploration?
It is a good idea to mention it as early as possible, so that students are aware of the requirements, and to refer to it during the early part of the course. Certain topics may lend themselves more easily to exploration work, and teachers should try to make suggestions about this when appropriate. Ideally, the work on the exploration should start before the end of the first year.

Is any particular format for the exploration to be used?
No particular format is required. Students may write both the text of explorations and draw graphs and/or tables by hand, or explorations may be fully or partially word-processed. Either form is acceptable as long as the exploration is clearly legible. In recent years, students have used various forms of technology (for example, spreadsheets) to present data, construct tables and graphs, and perform calculations.

Does the exploration need a title?
It is good practice to have a title for all pieces of work. If the exploration is based on a stimulus, it is recommended that that the title not just be the stimulus. Rather, the title should give a better indication of where the stimulus has taken the student. For example, rather than have the title “Number patterns”, the title could be “Number patterns—exploring patterns in final digits of prime numbers”.

What should the target audience be for a student when writing the exploration?
The exploration should be accessible to fellow students.

Can the students use mathematics other than that which they have done in class?
Yes, but this must be clearly explained and referenced, and teacher comments should clarify this.

Can students use mathematics that is outside the syllabus?
It is not necessary to do this to obtain full or high marks. If students decide to explore mathematics outside the syllabus it is recommended that the level is commensurate with the syllabus.

Is interpretation of results a separate section or should comments be made during the exploration?
Commenting on and interpreting results at the point at which these are used enhances the communication and should be summarized in a conclusion. This may also apply to comments on the validity of results.

Must students use external resource material?
There is no requirement for the use of external resource material. However, students often find it necessary to obtain material from other sources (for example, for obtaining data, or for using formulae). In these cases, students should acknowledge these sources and list them in a bibliography and state any sampling processes used when using secondary data.

Can a student use data for an exploration that has already been used for other Diploma Programme internally assessed work (for example, the extended essay, fieldwork or experiments)?

This is to be discouraged, since it is unlikely that data collected for one particular use will lend themselves to being treated in a different manner. It may well be possible that students could use the data collected from work completed in other subjects, provided that it is analysed in a totally different manner. However, it is the student’s responsibility to inform the teacher that these data have been collected for a different subject. The teacher must then ensure that no overlap occurs.

What is personal engagement?

The exploration is intended to be an opportunity for students to use mathematics to develop an area of interest to them rather than merely to solve a problem set by someone else. Criterion C (personal engagement) will be looking at how well the student is able to demonstrate that he or she has “made the exploration their own” and expressed ideas in an individual way.

What is the difference between precise and correct?

As outlined in criterion E (use of mathematics), “precise” mathematics requires absolute accuracy with appropriate use of notation. “Correct” mathematics may contain the occasional error as long as it does not seriously interfere with the flow of the work or give rise to conclusions or answers that are clearly wrong.

How can the teacher best monitor the work of students?

Having a schedule of due dates will help. It is also important that the teacher takes the time to review the work of students as the due dates come around. Developing a checklist of tasks and allowing for brief comment might help to keep open communication channels between students and the teacher.

Records of the progress made might best be kept by the students themselves, in the form of weekly journals. Teachers can simply read the journals and add a few brief comments. It may also be helpful to allow students to exchange journals for discussion or critique of work done during class time.

How much time should a student be spending on the exploration?

A total of 10 to 15 hours should be set aside for the exploration work in class. A portion of these hours can be spent on general class business (for example, reviewing policies and procedures, explaining the assessment criteria, reviewing progress, developing topics). Time spent on the exploration outside of class time should be in line with the normal homework expectation for 10 to 15 hours of class time.

What is the recommended target date for completion of the exploration?

This will, of course, vary from school to school depending upon several factors, not to mention other deadlines set within the Diploma Programme (for example, guided coursework, extended essays, laboratory reports). Teachers should also allow themselves plenty of time for the assessment process. The IB’s deadline for samples of student work for moderation is in April for a May session school or October for a November session school. Therefore, it is not unreasonable for teachers to collect final explorations six to eight weeks prior to this deadline. Having an early deadline for completion may also make allowances for that student who undoubtedly will have a last-minute calamity.

Is there any way to deal with students who do little or no work on the exploration?

The obvious way to present to any student who is hesitant to make progress with their exploration is to emphasize the possible impact on the final assessment, with the exploration making up 20% of their final mark. If a student is reluctant to do any work at all, then perhaps a meeting of student, parents or guardians, the teacher and the Diploma Programme coordinator is advisable. At such a meeting, it would be appropriate to review the consequences of not submitting an exploration. Students should be made aware that they will not receive a grade for mathematics if they have not submitted an exploration.

It may also be helpful to develop a school or departmental policy for internal assessments, so that guidelines, due dates, expectations, consequences, and so on are made clear to both students and parents early in the course.
Some teachers are confused about how to apply the exploration assessment descriptors. Is guidance available?

In addition to this TSM, teachers can attend a mathematics workshop before it is time to assess the explorations of their students. Diploma Programme coordinators have information about workshops; such information can also be found on the IB public website (http://www.ibo.org). Another idea might be to ask advice from an experienced teacher. Obtaining a second opinion from an experienced teacher can be extremely helpful.

Can all students from one class submit explorations on exactly the same topic?

No. In fact, no two students should submit explorations that are exactly the same mathematically (they can, however, be from the same area or topic of mathematics, for instance "vectors"). The exploration is intended to be the sole work of an individual student. Whole class discussion can be used when generating ideas, selecting the topics for exploration, sharing research sources, acquiring the necessary knowledge, skills and understanding, and seeking peer-feedback on writing. However, the final exploration submitted must be the work of the individual student.

Can students in the same class/school use the same title for the exploration?

Yes, but the explorations must be different, based on the avenues followed by the student. As noted above, the title should give an idea of what the exploration is about.

Can SL and HL students use the same stimulus?

Yes, there is no reason to restrict any stimulus to a particular level, although the assessment of criterion E will be different.

Do teachers need to use stimuli?

No, but choosing a topic is often the most difficult part of the process for students, so it may be useful to provide stimuli as a means of helping students to get started on their exploration. Teachers are free to use their own stimulus material.

How many explorations should be done by a student during the course?

The exploration is a significant piece of work and, as such, the advice would be that there is no necessity to undertake more than one during the course. However, in line with the “Approaches to the teaching and learning” section of the two guides, students should be given many opportunities to use modelling and investigative techniques to develop the sorts of skills necessary to perform well in the exploration. The time allocated to the “toolkit” provides space to develop these skills.

Should the scope and sequence of the course be influenced by the exploration?

Ideally, it should not be. It is intended that the exploration should be a natural opportunity to develop ideas that students have become familiar with as a part of the course. However, if it is felt that particular skills are likely to be needed in order for students to undertake the exploration successfully, then a teacher or school may wish to consider this when deciding on the teaching sequence.

What constitutes a draft of the exploration and how much feedback can be given on it?

The draft is the only time prior to the student handing in the final exploration that the teacher can give formal feedback (written or otherwise) to the student. Teachers can, if they wish to, use or adapt Form B for this purpose. As the guide states, “teachers should read and give advice to students on one draft of the work. The teacher should provide oral or written advice on how the work could be improved, but not edit the draft”. This advice should be in terms of the way the work could be improved, but this first draft must not be heavily annotated or edited by the teacher. The next version handed to the teacher after the draft must be the final one. It is good practice for a teacher to provide informal feedback at all other stages of the exploration process.

How much help can the teacher give to the student with the mathematical content of the exploration?

If a student needs help with the revision of a particular topic because they are having some problems using this in their exploration, then it is permissible (indeed, this is good practice) for the teacher to give this help. However, this must be done in such a way that is not directly connected with the exploration.
If a school has a large number of students (or several classes) doing the exploration, must only one teacher mark all the explorations?

The exploration should be marked by the teacher who has supervised the class. However, teachers should be aware that moderation is applied to a school rather than to individual teachers. It is, therefore, of the utmost importance that teachers collaborate and agree on their marking standards. Guidance is available in the Diploma Programme Assessment procedures.

Should the student’s final exploration be annotated?

As stated in the TSM, one of the teacher responsibilities is to assess the work accurately, annotating it appropriately to indicate where achievement levels have been awarded. It is essential that annotations are included on the student work to show why and where a level has been awarded. This includes assessing the mathematics and identifying and noting any errors. Without supporting comments, it is more difficult for the moderator to confirm the mark of the teacher.

Where can teachers receive more advice on the exploration?

Teachers should be aware that all questions on exploration work can be posted in the mathematics communities on the programme resource centre, and advice will then be offered by experienced teachers and the online faculty member. The programme resource centre also has many resources that have been posted by experienced teachers in the Communities, and these may provide a useful starting point for new teachers. However, it is important to understand that all opinions expressed by users of the programme resource centre are expressed strictly in their individual capacities, and not as representatives of the IB.
This section gives some useful background information on the type and style of the questions from teachers involved in the development of the HL paper 3 and also advice from students involved in the trialling of the papers. This section should be read in conjunction with the external assessment details of the HL paper 3 in the subject guide.

General comments on the style of questions.
There will be two questions and the marks for each question will normally lie in the range 23 to 32.
The questions can be best thought of as extended closed problems.
The early parts of the question will be accessible to all students and there will be a general gradation of difficulty as the question progresses.
The length of the question will allow for a more exploratory type of question than is possible in papers 1 or 2.
The questions will usually include either unfamiliar mathematics or familiar mathematics used in unfamiliar settings. Hence, it is possible that the question may include topics outside of the guide. In these cases, sufficient support will be given in the question to ensure all parts are accessible.

Assessment objectives
The “Assessment objectives in practice” table within the course guide indicates the greater emphasis of inquiry approaches rather than knowledge and understanding compared with the other papers. This reflects that the questions asked might be focused on a small area of the syllabus with the ideas developed further than might be possible in a shorter question. There is also an emphasis on assessment objective 4 (Technology: use technology accurately, appropriately and efficiently both to explore new ideas and to solve problems) as for both subjects this paper requires the use of technology.

Approaches by course
The assessment objectives for problem solving and inquiry approaches state that students should be able to demonstrate the following.
- Problem-solving: recall, select and use their knowledge of mathematical skills, results and models in both abstract and real-world contexts to solve problems.
- Inquiry approaches: investigate unfamiliar situations, both abstract and from the real-world, involving organizing and analysing information, making conjectures, drawing conclusions, and testing their validity.

This distinction between abstract and real-world contexts is likely to be apparent when comparing the HL paper 3 from the two subjects, though there will always be an overlap between the two.
The Mathematics: analysis and approaches questions will frequently require the student to discover general patterns, to verify them and to informally justify or prove the result.
The Mathematics: applications and interpretation questions will frequently follow through the solution of a problem in a real-world context using mathematics developed in the course.

In some ways the Mathematics: analysis and approaches questions can be viewed as an extension of Criterion B: Investigating Patterns in the MYP, and the Mathematics: Applications and interpretation questions an extension of Criterion D: Applying mathematics in real-life contexts.
Advice to students before taking the paper

It is easy for students to feel uncomfortable with extended questions, particularly if they have difficulties on the early parts. For this reason, the questions will be structured so that failure to do an early part of the question will not normally prevent a student from accessing later parts.

If a student encounters a difficulty while doing the questions they should look for points where they can “get back into” a question. Often the early parts will be “show that”, which enable students to carry the result of one part into subsequent parts. Students should use the result given and not a different one that they might have found.

Though the questions will generally have an incline of difficulty, sometimes the nature of the question means a trickier part comes earlier and the final part might be a simple application of the result derived. The five minutes of reading time should be used to carefully read through the whole question.

The questions will always include a small introductory paragraph explaining their purpose—why they are exploring this particular problem. The questions do not have to be completed in the order in which they are presented on the paper and an initial oversight of the problem may help candidates decide in which order to do the questions.

All of the skills needed for the HL paper 3 are also needed for papers 1, 2 and the IA. However, some need to be more explicitly highlighted for the HL paper 3. Some are general investigative approaches—although technology plays an important part in the HL paper 3 so there are certain skills students should become familiar with in order to be successful.

Skills

• How to systematically search for a pattern in order to be able to generalize, for example using a list or table, focusing on certain types of numbers, etc.
• Investigating a series of functions
• Storing values to multiple memories
• Choosing an appropriate window to view the graph of a function
• Familiarity with the methods of proof defined in the guide
• Being able to interpret and explain mathematical results and findings.
The following list gives the titles of some explorations for the internal assessment that attained a variety of marks. Some titles are more descriptive than others and in most cases the original wording has been retained. These categories and titles are not an exhaustive list and have been chosen only as guidance.

Aesthetics
- Calculating beauty—the golden ratio
- Colour preferences
- Daylight in a classroom—architectural design
- Is my mirror showing an accurate image?
- M.C. Escher: Symmetry and infinity of art
- Modelling the surface area of the glass dome of the Galleria Vittorio Emanuele II in Milan, Italy
- Searching for the ideal sound
- Shadows and height

Business and finance
- A comparative study of shares, real estate, bonds and banks
- Analysis of stock market changes
- Applications of calculus to the economics of firms
- Buying a car or a house—payment options
- Code breaking
- Economic development and levels of income
- Finding the lowest values of the dimensions of differently shaped storage rooms using differential calculus and optimisation
- International phone call pricing
- Statistics on flight information for an international airline

Food and drink
- Costs of products bought online compared to local grocery stores
- Dine in or dine out?
- How many peas are there in a 500 gram box of peas?
- Jelly bean study
- The cookie problem—taste is all-important
- The operation of a tuck shop
- The volume of an egg
- What is the greatest candy bar in the world?
Health and fitness

A comparison between calorie intake and gender
A comparison between lung capacity, age, weight and body fat
Aids awareness in Maseru
Blood pressure
Breakfast and school grades
Breast and cervical cancer–ethnic comparison
Infant mortality
Investigating reaction times
The SIR model in relation to world epidemics

Geometry and trigonometry

Geodesic domes
Graph theory–finding the shortest path
Newton-Raphson
Origami applications to mathematics
Sine waves in pitch frequencies
Spanning trees
Spherical geometry
Stacking bricks
The ideal cut of a diamond
The Ferris wheel
The open Knight's Tour on a chessboard
Topography and distance

Nature and natural resources

Airfoil and lift force
Analysis of the cost and utility of gas versus electricity in an average domestic situation
Animal population
Calculating the time of sunrise and sunset
Chaos theory: universal prediction
Counting weeds
Earthquakes--can they be predicted?
Florence Nightingale and modelling spread of disease
Graphing the Pharmacokinetic Profile
How does population density affect the transmission of Ebola?
Is the swell of the sea influenced by the temperature?
Modelling Arctic Sea ice cover
Modelling rainfall
Modelling the cooling of a cup of tea
Optimum dimensions of an aluminium drink can
Predicting cooling times
Rainfall compared to grape vine yield
Statistical investigation of leaves
The quality of local water
The SIR model in relation to world epidemics
The volume of an egg
Sunspot cycles
What is the relationship between the duration of drainage and water height in my bathtub?

Number

Approximation of pi
Cyclic situations and patterns through happy numbers
e, π and φ: are they related?
The golden number phi
What is e?
Euler’s totient theorem

People

Assuming a person has an 85% chance of meeting a soul mate during their lifetime, what does that mean about the number of potential soul mates in the world?
Correlation between divorce rate and financial uncertainty
Does gender influence choice of favourite animal?
Does the electoral college in the US truly represent the political choice of the people?
Effect on tipping percentages
Exploring the gamblers’ fallacy—why it can cause fatal decisions
Is film genre choice more dependent on nationality or gender?
Gender-based discrimination
Left-handed students
Memory
Perception of time
Relationship between a country’s human development index and infant mortality rate
Relationship between GDP and fertility rate in countries across the world
Relationship between income inequality and rate of corruption in a country
Relations between international and bilingual students: jobs, pocket money and spending behaviour
Relationship between unemployment and criminality in Sweden from 1988-1999
Relationship between women’s secondary education and fertility rates in developing countries
Statistical comparison of the number of words in a sentence in different languages
The birthday paradox
When can I use “swimmed” and “knowed” correctly?
Voter turnout

Sport and leisure

Baseball bat speed compared with body weight
Body proportions for track and field events
Does the team win when it was the dominating team during the match?
Effective short corners in hockey
Exploring card counting in blackjack using probability
Factors affecting athletic performance
Has sports performance improved more on land or in water?
Height, weight and swimming performance
How does the amplitude of a ski turn affect the speed of the skier?
How far do tennis balls roll?
The geometry involved in billiards
Modelling musical chords
Modelling the jump of a horse
Practice makes perfect
Relationship between skiing ability and distance travelled to ski
Resistance of fishing line
Rollerblading and the maths behind it
The Monty Hall problem
The Tower of Hanoi puzzle
Video games and response times
Will female swimmers ever overtake male swimmers?

Travel and transport

Cost efficiency of vehicles
Driving skills
How many bicycles are there in Amsterdam?
Petrol prices
Public transportation costs and car usage: a personal comparison
Running late and driving habits
Seat belt use
The effect of blood alcohol content law on the number of traffic collisions in Sacramento
Traffic study of Schiphol International Airport
Transport safety in town centres
For teachers and students

The following is a list of suggested reading for students and for teachers. The suggestions for students can be useful starting points for the internal assessment and are interesting recreational reading. The lists are not an exhaustive and are not recommended textbooks.

For teachers

Burge, B, Lenkeit, J and Sizmur, J. 2015. PISA in Practice–Cognitive activation in Maths: How to use it in the classroom. NFER. Available at: https://www.nfer.ac.uk/publications/PQUK04/ (accessed 28 March 2018)
Further reading

Videos

Video 1
Preparing students for the HL paper 3

Video 2
Technology in the DP mathematics classroom

Video 3
The effective use of the mathematics toolkit

Video 4
Course selection: communicating choices